brauch echt hilfe bei der mengenlehre

Dieses Thema im Forum "Schule, Studium, Ausbildung" wurde erstellt von sphere, 16. Oktober 2007 .

Status des Themas:
Es sind keine weiteren Antworten möglich.
  1. 16. Oktober 2007
    moin leute ich bräuchte da ma etwas hilfe.
    ich bin nich grad der mathecrack... und mit diesen aufgaben hier komm ich garnich klar. das is ein teil meiner hausaufgaben bis freitag:

    {2d+1 menge von Z | 0 < d² < 50 ^ d menge von N}
    {w menge von N | w ist ungerade und 0 < w < 10}
    {p menge von Z | -20 < p < 20 ^((p ist eine Primzahl) v (-p ist eine Primzahl)}

    weiß nich ob ich das richtig ausgedrückt habe.
    anstatt von"menge von" steht in den aufgaben das mengenzeichen. weiß leider nich wie man das darstellt....
    wäre klasse wenn ihr mir die lösungen nennen könnt oder mir zumindest nen hinweis geben könntet.
     
  2. 16. Oktober 2007
    AW: brauch echt hilfe bei der mengenlehre

    Möchtest du wissen was die Variablen d, w und p sind? Oder nach was suchst du? Gibts da auch ne Aufgabenstellung zu?
     
  3. 16. Oktober 2007
    AW: brauch echt hilfe bei der mengenlehre

    joar also : 2d+1 , das heißt ungerade. dann Aus allen Ganzen Zahlen, also positiv und negativ.
    d^2 ist ( jetzt würde es interessant, wenn es € C ( komplexe Zahlen)wär) kann nie negativ sein, wird also immer größer als 0 sein. d^2 wird bei positiven Zahlen ne größer sein als 50^d. Also wär es für positive alle ungeraden, ganzen Zahlen . Wenns allerdings negativ wird,dann siehst du dass das nicht möglich ist. Wenn du ne Zah hoch minus irgendwas nimmst, dann kannste das uch als Bruch sehen. nen Bsp an -1 : (-1)^2 = 1 wärend 50^(-1) = 1/50 ist. Je größer die Zahl desto größer das Quadrat und kleiner der Exponent ( das ganze wird exponent genannt, nicht nur die Hochzahl).
    Schluss : Alle ungeraden, natürliche Zahlen sind die Lösungsmenge

    zu w. da sag ich nix zu da kapier ich nicht mal warum du sowas in die diskussion gibst.( wenn die aufgabe wirklich lautet die Lösungs,emge zu finden).

    p) Ok erstma wenn -p vom betrag prim ist ,dann ist p prim , wenn p pim ist, dann isses -p nicht.
    wenn -p prim ist dann bedeutet das, dass p negativ ist, und prim im betrag ist. Also beginnt bei -19,-17,-13,-11,-7,-5,-3,-2 und wird weiter gefüht bis in die unendlichkeit, Also danach kann jede beliebige Primzahl folgen. Wenn p die Primzahl ist dann kann p nicht negaiv sein sondern ist halt die Menge aller Primzahlen. p€ P

    ...glaube ich zumindest-
    Am besten immer Aufgabenstellung und Klasse sagen, dann kann man erstens wissen was du wissen willst und 2. wie genau/ explizit du das ausgeführt haben möchtest.
     
  4. 17. Oktober 2007
    AW: brauch echt hilfe bei der mengenlehre

    sry das hab ich voll vergessen.
    also die aufgabenstellung ist, wie du erraten hast, die lösungsmenge zu finden.
    nachdem ich dein beitrag gelesen hab frag ich mich allerdings auch warum ich das mit "w"zur diskussion gegeben habe -.- ok leuchtet ein xD
    die lösung soll nich allzu komplex sein. einfach die lösung und eine kleine erklärung warum das so ist damit ich mir das nochma in ruhe ansehn kann und das begreife.

    das is matheunterricht im ersten semester von bwl studium mit dem ziel bachelor -.-

    ok also wären bei "p" zb. alle primzahlen von -19 bis 20 so wie ich das verstanden hab.

    das mit dem 50^d is mir allerdings immernoch zu hoch.
    also lösungemenge müssten ja alle quadrierten zahlen zwischen 0 und 50^d von N sein.
    das is mir echt zu hoch *-*
     
  5. 17. Oktober 2007
    AW: brauch echt hilfe bei der mengenlehre

    also wie gesagt, ich bin mir da nicht wirklich sicher, bei mir war das nie Mengenlehre sondern eher Mengenleere...aber egal

    ich hab da was bei p verwechselt das stimmt also ned melde sich ma einer der da ne ahnung hat
    und zu d: jo also eigentlich is die lösungsmenge alle natürlichen Zahlen wenn ich nicht irre

    edit schreibe nachher noch was, jetzt gerade keine zeit
     
  6. Video Script

    Videos zum Themenbereich

    * gefundene Videos auf YouTube, anhand der Überschrift.