Mathe - Elastizitäten

Dieses Thema im Forum "Schule, Studium, Ausbildung" wurde erstellt von flawlessT, 29. Januar 2013 .

Schlagworte:
  1. 29. Januar 2013
    moin, ein kleines matheproblem... hänge da beim lernen

    also die aufgabe ist folgende

    der nutzen U eines konsumenten hänge über
    f:[2; unendlich) -> R^+, U=f(x) = 6^0,5 * sqrt(x-2)
    von gütermenge x ab.
    a) für welche menge x ist die elastizität des nutzens =1? interpretieren sie dieses ergebnis!

    b) zeigen sie, dass der grenznutzen für x>2 positiv und abnehmen ist.



    bei dieser aufgabe habe ich absolut keine ahnung, wie ich rangehen geschweige denn sie lösen soll, aber da dieser aufgabentyp recht häufig in den klausuren vertreten ist, wäre es schon gut, wenn mir hier jemand helfen würde

    danke schonmal
     
  2. 30. Januar 2013
    AW: Mathe - Elastizitäten

    A) Elastizität:

    ( f'(x) * x ) / f(x) = 1
    Nach x-> auflösen

    B)
    Grenznutzen = f'(x) = 0,5(x-2) (ist für x>2 positiv)

    Ist spät und kann nicht schlafen, dein Glück
     
  3. 30. Januar 2013
    AW: Mathe - Elastizitäten

    ok, mein vwl liegt jetzt schon bisschen länger zurück, aber:

    schlag dein skript auf und schau unter elastizität nach... das ist ne einfache formel, in die du die gegebenen werte einsetzt und dann zum gesuchten wert auflöst.
    wie man die ergebnisse interpretiert, steht da dann auch dabei!


    die ableitung für f(x) musst du selbst bilden können...
     
  4. 30. Januar 2013
    AW: Mathe - Elastizitäten

    die formel kann ich dir geben!!
    die elastizität an der stelle x0 ist gleich die ableitung an der stelle x0 mal x0 durch die funktion an der stelle x0

    Elasizität (x0) = f`(x0) * (x0 / f (x0))
     
  5. Video Script

    Videos zum Themenbereich

    * gefundene Videos auf YouTube, anhand der Überschrift.