Mathe-Übungsaufgabe

Dieses Thema im Forum "Schule, Studium, Ausbildung" wurde erstellt von access denied, 8. Januar 2009 .

  1. Diese Seite verwendet Cookies. Wenn du dich weiterhin auf dieser Seite aufhältst, akzeptierst du unseren Einsatz von Cookies. Weitere Informationen
  1. #1 8. Januar 2009
    Moin
    Kann mir einer das übersetzen, bzw. die Lösung angeben
    BW is klar
    Edit, dass heisst nicht mal n, sondern hoch n
     

  2. Anzeige
  3. #2 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    (a+1)^n -> a^n+2a+1^n

    (a-1)^n -> a^n-2a+1^n
     
  4. #3 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    Ich weiß nicht, ob das dein Aufgabenblatt ist - habe es so im Netz gefunden und dachte mir, warum halb helfen, wenn es auch ganz geht ;)
    1.1: Annahme: Es ex. r Element IQ : r^2=3
    Beweis: r^2=3 <=> r = Wurzel (3) => Widerspruch! Wurzel(3) ist irrational!
    => Es ex. keine rationale Zahl r für die r^2= 3 ist.

    1.2: Voraussetzung: |2x-1| > x+7 mit x€IR
    Zz: Alle reellen Zahlen x für die die VS gilt.
    Rechnung: (positive x)
    |2x-1| > x+7
    <=> |2x-1| -7 > x
    <=> 2x-1 -7 > x
    <=> 2x - 8 > x
    <=> x>8
    => M(x_IR_+)={9,...,n}

    edit: Rechnung: (negative x)
    |2x-1| > x+7
    ...
    => M(x_IR_-)={-3,-4,...,-n}

    1.3: Ich habe einige Probleme beim Verstehen der Aufgabenstellung.
    Jedoch würde ich rein logisch betrachtet sagen. Einfacher Ausdruck: Binomische Formel.
    (a+1)^n = [Summe von k=0 bis k=n] (n über k) a^(n-k) * 1^k
    (a-1)^n = [Summe von k=0 bis k=n] (n über k) a^(n-k) * (-1)^k

    Abgeleitet von Binomische Formel – Wikipedia


    1.4: [Summe von k=0 bis k=n] x^k (x-1)


    Ich hoffe ich konnte dir helfen ;)
     
  5. #4 8. Januar 2009
    AW: Mathe-Übungsaufgabe


    Kompletter Blödsinn, hör ja nicht auf ihn!...Schonmal etwas vom Pascalschen Dreieck gehört? OMG...

    Richtige Lösung, siehe Post hier drüber...
     
  6. #5 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    Du hast doch oben selbst "binomische Formel" gesagt... außerdem steht der Exponent nach der Klammer.
     
  7. #6 8. Januar 2009
    AW: Mathe-Übungsaufgabe


    Boah 'ne, das ist nicht dein Ernst oder? Ich diskutiere mit dir jetzt sicher nicht über die Bin. Formel. Das ist Erstsemester-Mathe-Studi-Anfangsstoff...

    Und deine Antwort wirkt mir eher schülerhaft als gewissenhaft ;)

    Also bitte nicht mit mir diskutieren ;)

    edit: Und falls noch ein Kommentar in deinem Kopf rumschwirren sollte: Der Exponent hinter der Klammer ist kein Quadrat, sondern ein n, darum gilt das Pascalsche Dreieck und die allgemeine binomische Formel, von der du wahrscheinlich noch nie etwas gehört haben wirst ;)
     
  8. #7 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    1.3: Ich habe einige Probleme beim Verstehen der Aufgabenstellung.
    Jedoch würde ich rein logisch betrachtet sagen. Einfacher Ausdruck: Binomische Formel.
    (a+1)^n = [Summe von k=0 bis k=n] (n über k) a^(n-k) * 1^k
    (a11)^n = [Summe von k=0 bis k=n] (n über k) a^(n-k) * (-1)^k

    Abgeleitet von Binomische Formel – Wikipedia

    Das hast du doch geschrieben... na egal, du hast sicherlich recht.

    Sicher habe ich davon noch nichts gehört, aber ich bewundere dich. :)
     
  9. #8 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    das "problem" ist aber, dass es ^n ist. da musste halt die binomialkoeffizienten allgemein berechnen.

    Deine lösung ist für n=2

    mfG
     
  10. #9 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    Lol das ist ja tatsächlich die Aufgabe
    Thx, würde Dir zwei BW's geben, geht nur net ;)
    Ich denk aber nochma dran

    noch ne Frage, wenn ich die Nullstellen einer quadratischen GLeichung ausrechne, steht ja unter der Wurzel (p/2)²-q. Wenn p ein Bruch ist, multiplizier ich den durch 2 und quadriere dann oder summiere ich die Nenner einfach und quadriere das?
     
  11. #10 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    Gehört halt zum Standard eines Mathestudenten. Ging mir auch nur darum, dass der Threadersteller eine richtige Antwort bekommt und du es vielleicht auch verstehst. Deine Version gilt für n=2, jedoch nicht für n>2, du kannst es ja gerne mal für n=3 nachprüfen ;)


    edit:
    Ich hoffe du redest von Mitternachts/PQ-Formel


    Angenommen p=1/2

    => ((1/2) / 2)² <=> (1/2)² / 2² <=> (1² / 2²) / 4 <=> (1/4) / 4 <=> 1/6
    Vorgehensweise: Nehme den Exponent (das Quadrat) hinter der Klammer und beziehe es auf den Zähler/Nenner. Das darfst du, denn es ändert nichts an der Funktion.
    Nun rechnest du zuerst den Zähler aus, dann den Nenner.
    Steht nun immernoch ein Bruch im Zähler, nimm den Nenner des Zählerbruches und multipliziere diesem mit dem Nenner der gesamten Funktion/des Terms.
    => (1/4) / 4 => 1/4*4 => 1/16

    Andere Vorgehensweise:
    p=1/2

    => ((1/2) / 2)² <=> (1/4)² <=> (1² / 4²) <=> 1/16


    LG
     
  12. #11 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    Very Thx, letzte Frage für heute, die Nullstellen von cos (2X), wie mach ich das?
    Ist das x=(2*k+1)pi/2 also dann 5*pi/2?
     
  13. #12 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    0 = cos(2x) |arccos
    arccos(0) = 2x

    x = arccos(0)/2

    Allerdings hat cos(z) unendlich viele Nullstellen, das gibt dir nur eine an.
     
  14. #13 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    Also wäre die Nullstelle in diesem Fall 90?
     
  15. #14 8. Januar 2009
    AW: Mathe-Übungsaufgabe

    Arccos(0) = 90°
    Du brauchst die Hälfte, oder im Bogenmaß pi/4.
     
  16. #15 9. Januar 2009
    AW: Mathe-Übungsaufgabe

    Überlege dir. Pi=180°
    Pi/4=45°

    Aber mein Vorposter hat dir da eigentlich schon gut geholfen, zumal er dir sogar den Rechenweg hingeschrieben hat ;)

    Hoffe du kannst damit was anfangen.

    LG
     
  17. #16 9. Januar 2009
    AW: Mathe-Übungsaufgabe

    Also dann wären es eigentlich pi/2?
     
  18. #17 9. Januar 2009
    AW: Mathe-Übungsaufgabe


    Du weißt nun, dass arccos(0)=90°

    => x= 90°/2
    => x=45°
    umgeformt in andere Schreibweise
    => x=Pi/4

    Für x=Pi/4 gibt es eine Nullstelle.

    Da Pi auf dem Kreis liegt und wenn du Cosinus(x) mal gezeichnet hast, weißt du wie der Graph aussieht, gibt es nicht nur eine, sondern unendlich viele Nullstellen.

    Jedoch kannst du explizit auf diese eine verweisen. Bei +360° oder anders geschrieben: +2*Pi (also eine volle Umdrehung des Kreises), liegt die nächste Nullstelle.


    edit: Ich weiß in diesem Fall nicht, wie deine Aufgabenstellung lautet.
    Heißt sie: Finden Sie eine Nullstelle, so schreibst du x=Pi/4
    Heißt sie: Finden Sie die Nullstellen aller x, so schreibst du x=Pi/4 + k*2*Pi, wobei k ein Element der natürlichen Zahlen ist.

    Zur Erklärung: k*2*Pi steht für k-Umdrehungen. k=1 -> nächste Nullstelle, k=2 -> übernächste Nullstelle und das ganze sukzessive weiter.
     
  19. #18 9. Januar 2009
    AW: Mathe-Übungsaufgabe

    Ich würd k auf die Menge der ganzen Zahlen erweitern => cos(x) hat auch im negativen Nullstellen.
    Und sinus und cosinus haben alle Pi eine Nullstelle, also Pi/4 + k*pi mit k e Z.
     
  20. #19 9. Januar 2009
    AW: Mathe-Übungsaufgabe

    Stimmt, auf die ganzen Zahlen zu erweitern wäre wirklich intelligenter. Hab nur soweit gedacht, dass man immer gegen den Uhrzeigersinn dreht und somit nicht in negativer Richtung. Aber im Allgemeinen hast du schon recht.
     

  21. Videos zum Thema
Die Seite wird geladen...