Schnittpunkt von zwei Geraden im dreidimensionalen Raum

Dieses Thema im Forum "Schule, Studium, Ausbildung" wurde erstellt von freek, 14. September 2011 .

  1. Diese Seite verwendet Cookies. Wenn du dich weiterhin auf dieser Seite aufhältst, akzeptierst du unseren Einsatz von Cookies. Weitere Informationen
  1. #1 14. September 2011
    Hallo leute,

    ich brauche mal einen kleinen denkanstoss bei einer matheaufgabe.
    und zwar gibt es eine gerade durch einen dreidimensionalen raum. die geradengleichung ist hierbei bekannt. dann gibt es noch eine weitere gerade, welche durch einen festgelegten punkt verläuft. bei einem zweiten punkt, der ebenfalls auf der zweiten geraden liegen soll sind nur die x1 und x2 koordinate bekannt, die x3 koordinate ist unbekannt.
    jetzt soll ich x3 so wählen, dass sich beide geraden schneiden. Wie gehe ich das an?

    ich habe erstmal beide geradengleichungen aufgeschrieben, die zweite halt mit variable für x3. Wie gehts weiter?

    Ich hoffe ihr könnt mich einigermaßen verstehen.:D Schonmal vielen Dank.
     

  2. Anzeige
    Heute: Deals & Sale mit stark reduzierten Angeboten finden.
  3. #2 14. September 2011
    AW: Schnittpunkt von zwei Geraden im dreidimensionalen Raum

    gleichsetzen
     
  4. #3 14. September 2011
    AW: Schnittpunkt von zwei Geraden im dreidimensionalen Raum

    Wie mein Vorposter schon sagte, musst du schlicht beide Gleichungen gleichsetzen und dann zur Unbekannten auflösen.
     
  5. #4 14. September 2011
    AW: Schnittpunkt von zwei Geraden im dreidimensionalen Raum

    Richtig. Du must beide Geradengleichungen gleichsetzen.
    So erhältst du ein Gleichungssystem mit drei Gleichungen mit jeiweils zwei "Laufparametern" und einer Unbekannten in der letzten Gleichung.
    Diese Unbekannte kannst du nun ganz einfach herausfinden. (Drei Gleichungen mit drei Unbekannten --> sollte lösbar sein)


    Gruß
     
  6. #5 14. September 2011
    AW: Schnittpunkt von zwei Geraden im dreidimensionalen Raum

    genau! Und dann setzt du diese zwei gefundenen Parameter in eine der beiden Gleichungen ein und erhälst den Schnittpunkt
     
  7. #6 15. September 2011
    Zuletzt von einem Moderator bearbeitet: 14. April 2017
    AW: Schnittpunkt von zwei Geraden im dreidimensionalen Raum

    Danke, so hatte ich es allerdings auch versucht. Aber weder ich noch mein cas-rechner sind zu einen ergebnis gekommen. :(

    ich schreibe mal die 2 geradengleichungen auf, vllt. könnt ihr so einen fehler entdecken.

    0 2 0 2
    g:x= 1 + r* -1 f:x= 0 + t* 2
    2 -1 2 a-2

    die untereinandergeschrieben zahlen sollen vektoren sein.
    jetzt muss ich die ja gleichstellen und komme auf folgende matrix:

    2 -2 0
    -1 -2 -1
    -1 -a-2 0

    Wie löse ich das nun auf oder findet ihr irgendeinen fehler?:)



    edit: mit welchem programm kann ich vernünftig formeln verfassen? so sieht das ja ziemlich bescheiden aus...


    nochmal als bild, damit man überhaupt etwas erkennt. :)

    [​IMG]
     
  8. #7 15. September 2011
    AW: Schnittpunkt von zwei Geraden im dreidimensionalen Raum

    Du bist eigentlich schon fast fertig. Wenn du jetzt die drei Gleichungen ganz unten nach a auflöst, kriegst du den Schnittpunkt raus.
     
  9. #8 1. Oktober 2011
    AW: Schnittpunkt von zwei Geraden im dreidimensionalen Raum

    Manipuliere die ersten Zwei Zeilen des unteren Gleichungssystems auf folgende Weise:

    Ausgangsgleichungen:

    Code:
    
    I: 0 + 2r = 0 + 2t
    
    II: 1 - 1r = 0 + 2t
    
    
    Zu:

    Code:
    
    I: 2r - 2t = 0
    
    II: 1r + 2t = 1
    
    
    I + II ergibt:

    Code:
    
    3r = 1
    
    [B]r = 1/3[/B]
    
    
    Daraus folgt:

    Code:
    
    2r - 2t = 0
    
    für r = 1/3
    
    2 * 1/3 - 2t = 0
    
    -2t = - 2/3
    
    [B]t = 1/3[/B]
    
    
    Einfügen in die letzte Gleichung mit der Veränderlichen a:

    Code:
    
    2 - 1r = 2 + t( a - 2 ) 
    
    für r = 1/3 & t = 1/3
    
    2 - 1/3 = 2 + 1/3( a - 2 )
    
    5/3 = 2 + 1/3a - 2/3
    
    5/3 = 1/3a + 4/3
    
    1/3a = 1/3
    
    [B]a = 1[/B]
    
    
    Für a = 1 schneiden sich die Geraden.
     

  10. Videos zum Thema
Die Seite wird geladen...